Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs)


Tecimer H., TÜRÜT A. , Uslu H., Altindal S., Uslu I.

SENSORS AND ACTUATORS A-PHYSICAL, cilt.199, ss.194-201, 2013 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 199
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1016/j.sna.2013.05.027
  • Dergi Adı: SENSORS AND ACTUATORS A-PHYSICAL
  • Sayfa Sayıları: ss.194-201

Özet

In order to obtain detailed information about the current-transport mechanisms (CTMs) in the Au/(Zn-doped) PVA/n-GaAs SBDs, the forward and reverse bias current–voltage (IV) characteristics wereinvestigated in the temperature range of 80–350 K by the steps of 30 K. The ideality factor (n) decreasesfrom 12.850 to 2.805, while the zero-bias barrier height (˚Bo) increases from 0.145 eV to 0.606 eVwith increasing temperature from 80 K to 350 K. While the n decreases, ˚Boincreases with increas-ing temperature. Such positive temperature coefficient (˛) of ˚Bois not in agreement with the negativetemperature coefficient of band gap GaAs or barrier height (BH) of ideal diode. On the other hand, thevalue of modified barrier height (=n˚Bo) decreases almost linearly with the increasing temperature as˚B(T) = (1.909–5.852 × 104T) eV. It is clear that this value of the BH is in good agreement with the negativetemperature coefficient of band gap of GaAs (5.4 × 104eV K1). In addition, the semi-logarithmic ln IVplots at low bias voltages are almost parallel for each temperature. As a result of that, its inverse slope(Eo= nkT/q = 87 meV) remained almost constant, indicating it is independent of temperature. Such behav-ior of BH can be explained by the field emission (FE) theory especially at low temperatures rather thanthermionic emission (TE) and thermionic field emission (TFE) theories. Therefore, the non-ideal behaviorof the forward-bias IV characteristics in Au/(Zn-doped)-PVA/n-GaAs SBD was successfully explained interms of the TE mechanism with a double GD of BHs.

In order to obtain detailed information about the current-transport mechanisms (CTMs) in the Au/(Zn-doped) PVA/n-GaAs SBDs, the forward and reverse bias current-voltage (I-V) characteristics were investigated in the temperature range of 80-350 K by the steps of 30K. The ideality factor (n) decreases from 12.850 to 2.805, while the zero-bias barrier height (Phi(Bo)) increases from 0.145 eV to 0.606 eV with increasing temperature from 80K to 350 K. While the n decreases, Phi(Bo) increases with increasing temperature. Such positive temperature coefficient (alpha) of Phi(Bo) is not in agreement with the negative temperature coefficient of band gap GaAs or barrier height (BH) of ideal diode. On the other hand, the value of modified barrier height (=n Phi(Bo)) decreases almost linearly with the increasing temperature as Phi(B)(T)= (1.909-5.852 x 10(-4)T) eV. It is clear that this value of the BH is in good agreement with the negative temperature coefficient of band gap of GaAs (-5.4 x 10(-4) eV K-1). In addition, the semi-logarithmic In I-V plots at low bias voltages are almost parallel for each temperature. As a result of that, its inverse slope (E-0 = nkT/q = 87 meV) remained almost constant, indicating it is independent of temperature. Such behavior of BH can be explained by the field emission (FE) theory especially at low temperatures rather than thermionic emission (TE) and thermionic field emission (TFE) theories. Therefore, the non-ideal behavior of the forward-bias I-V characteristics in Au/(Zn-doped)-PVA/n-GaAs SBD was successfully explained in terms of the TE mechanism with a double GD of BHs. (C) 2013 Elsevier B.V. All rights reserved.