Tauberian Theorems for the Summability Methods of Logarithmic Type


Sezer S. A. , Çanak İ.

BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, cilt.41, ss.1977-1994, 2018 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 41
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1007/s40840-016-0437-9
  • Dergi Adı: BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY
  • Sayfa Sayıları: ss.1977-1994

Özet

A sequence ( sn) of real numbers is said to be summable to a finite number. by the logarithmic method ( L) if converges for 0 < x < 1 and tends to. as x. 1 -. Our main object in this paper is to introduce new Tauberian conditions of the " one-sided bounded" or " slowly decreasing" type to retrieve ordinary convergence of a real sequence from its (L) summability.